Localization of RF Breakdowns in a Standing Wave Cavity

نویسندگان

  • Faya Wang
  • Chris Adolphsen
چکیده

At SLAC, a 5-cell, normal-conducting, L-band (1.3 GHz), standing-wave (SW) cavity was built as a prototype positron capture accelerator for the ILC. The structure met the ILC gradient goal but required extensive rf processing. When rf breakdowns occurred, a large variation was observed in the decay rate of the stored energy in the cavity after the input power was shut off. It appeared that the breakdowns were isolating sections of the cavity, and that the trapped energy in those sections was then partitioned among its natural modes, producing a distinct beating pattern during the decay. To explore this phenomenon further, an equivalent circuit model of cavity was created that reproduces well its normal operating characteristics. The model was then used to compute the spectra of trapped energy for different numbers of isolated cells. The resulting modal patterns agree well with those of the breakdown data, and thus such a comparison appears to provide a means of identifying the irises on which the breakdowns occurred.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pinning an ion with an intracavity optical lattice.

We report one-dimensional pinning of a single ion by an optical lattice. A standing-wave cavity produces the lattice potential along the rf-field-free axis of a linear Paul trap. The ion's localization is detected by measuring its fluorescence when excited by standing-wave fields with the same period, but different spatial phases. The experiments agree with an analytical model of the localizati...

متن کامل

Localizing of a Four-Level Atom via Absorption Spectrum

We propose a scheme for localizing an atom in a four-level configuration inside a classical standing wave field, conditioned upon the measurement of frequency of a weak probe field. In the classical standing wave field, the interaction between the atom and the field is position dependent due to the Rabi-frequency of the driving field. Hence, as the absorption frequency of the probe field is mea...

متن کامل

HIGH - GRADIENT STUDIES ON 11 . 4 G # z COPPER ACCELERATOR STRUCTURES

This paper is a progress report on studies carried out at SLAC to assess the high-gradient behavior of 11.4 GHz copper accelerator structures for future linear colliders. The structures which have been examined in the last year are a 7-cavity standing wave (SW) section and a 30-cavity traveling-wave (TW) section. Both st&tures are of the constant-impedance uniform-aperture iype with a m phase s...

متن کامل

بررسی اتم هیدروژن در کاواک کروی با استفاده از توابع پایه بی‌اسپلاین

Studying confined quantum systems (CQS) is very important in nano technology. One of the basic CQS is a hydrogen atom confined in spherical cavity. In this article, eigenenergies and eigenfunctions of hydrogen atom in spherical cavity are calculated, using linear variational method. B-splines are used as basis functions, which can easily construct the trial wave functions with appropriate bound...

متن کامل

Performance of a 1.3 Ghz Normal-conducting 5-cell Standing-wave Cavity*

A 5-cell, normal-conducting, 1.3 GHz, standing-wave (SW) cavity was built as a prototype capture accelerator for the ILC positron source. Although the ILC uses predominately superconducting cavities, the capture cavity location in both a high radiation environment and a solenoidal magnetic field requires it to be normal conducting. With the relatively high duty ILC beam pulses (1 msec at 5 Hz) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009